A Hybrid Method for Distance Metric Learning
نویسندگان
چکیده
We consider the problem of learning a measure of distance among vectors in a feature space and propose a hybrid method that simultaneously learns from similarity ratings assigned to pairs of vectors and class labels assigned to individual vectors. Our method is based on a generative model in which class labels can provide information that is not encoded in feature vectors but yet relates to perceived similarity between objects. Experiments with synthetic data as well as a real medical image retrieval problem demonstrate that leveraging class labels through use of our method improves retrieval performance significantly.
منابع مشابه
Composite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملA Gabor Filterbank Approach for Face Recognition and Classification Using Hybrid Metric Learning
In this paper, we consider the notion of distance/similarity metric learning method for classification and similarity search for face recognition purposes. We use the theory of filter banks, and Gabor wavelets for extraction of face features in three datasets: the ORL dataset, Yale face dataset, and ATT face dataset, and we compare the recognition performance with Gabor features to discrete Fou...
متن کاملAn Effective Approach for Robust Metric Learning in the Presence of Label Noise
Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...
متن کاملA new attitude coupled with the basic fuzzy thinking to distance between two fuzzy numbers
Fuzzy measures are suitable in analyzing human subjective evaluation processes. Several different strategies have been proposed for distance of fuzzy numbers. The distances introduced for fuzzy numbers can be categorized in two groups:\1. The crisp distances which explain crisp values for the distance between two fuzzy numbers.\2. The fuzzy distance which introduce a fuzzy distance for normal f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1206.7112 شماره
صفحات -
تاریخ انتشار 2012